LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
B.Sc. DEGREE EXAMINATION - PLANT BIOLOGY \& PLANT BIOTECH.

FOURTH SEMESTER - JUNE 2015

ST 4209 - MATHEMATICAL STATISTICS

Date: 03/07/2015
Dept. No. \square Max. : 100 Marks
Time : 10:00-01:00

Section A

Answer all the questions

10×2 = 20 marks

1. Provide the axiomatic definition of probability.
2. If $P(A)=0.7, P(B)=0.5$ and $P(A \cup B)=0.8$ find $P(A \cap B C)$.
3. Find $E(X)$ if $f(x)=6 x(1-x), 0 \leq x \leq 1$, zero elsewhere.
4. If 12 fair coins are flipped simultaneously find the probability of getting at least 4 heads.
5. Write the moment generating function and variance of binomial distribution.
6. Define beta distribution of second kind.
7. Let X have the probability density function $f(x)=x^{2} / 9,0<x<3$, zero elsewhere find the the probability density function of $Y=X^{3}$.
8. Define chi-square distribution with n degrees of freedom.
9. State the sufficient conditions for an estimator to be consistent.
10. Define Type I and Type II errors in testing of hypothesis.

Section B

Answer any five questions

5x $8=40$ Marks
11. (a) State and prove Bayes' theorem .
(b) State and prove addition theorem on probability for three events.
12. If $P(A)=1 / 3, P(A)=1 / 5$ and $P(A \cap B)=1 / 7$ find
(i) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
(ii) $\mathrm{P}\left(\mathrm{A}^{c} \mid \mathrm{B}\right)$
(iii) $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right)$ (iv) $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mid \mathrm{B}^{\mathrm{c}}\right)$
13. If $\mathrm{f}(\mathrm{x})=(1 / 2)^{\mathrm{x}}, \mathrm{x}=1,2,3, \ldots$, zero elsewhere compute $\mathrm{P}(\mu-2 \sigma<\mathrm{X}<\mu+2 \sigma)$.
14. Derive the moment generating function of Poisson distribution. Also find mean and variance.
15. If $f(x, y)=8 x y, 0<x<y<1$, zero elsewhere find (i) $P(X<1 / 2 \cap Y<1 / 4)$
(ii) the marginal and conditional distributions.
16. Derive the mean and variance of beta distribution of II kind.
17. State and prove Boole's inequality.
18. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ is a random sample from $\mathrm{N}(\theta, 1), \theta \epsilon(-\infty, \infty)$ find the maximum likelihood estimator of θ.

Section C
19. (a) State and prove Chebyshev's inequality.
(b) A random variable X has the following probability distribution:

x	$:$	0	1	2	3	4	5	6	7	8
$\mathrm{p}(\mathrm{x}):$	k	3 k	5 k	7 k	9 k	11 k	13 k	15 k	17 k	

(i) Determine the value of k. (ii) Find $P(X<3)$ and $P(0<X<5)$
(iii) What is the smallest value for which $\mathrm{P}(\mathrm{X} \leq \mathrm{x})>0.5$?
(iv) Find the distribution function of X .
$(10+10)$
20. (a) Show that under certain conditions binomial tends to Poisson distribution.
(b) Establish the additive property of gamma distribution.
(c) If X is $\mathrm{N}\left(30,5^{2}\right)$ find (i) $\mathrm{P}(26<\mathrm{X}<40)$ (ii) $\mathrm{P}(|\mathrm{X}-30|>5)$
(iii) $\mathrm{P}(\mathrm{X}>42)$ (iv) $\mathrm{P}(\mathrm{X}<28)$
(4+4+12)
21. If $f\left(x_{1}, x_{2}\right)=21 x_{1}{ }^{2} x_{2}^{3}, 0<x_{1}<x_{2}<1$, zero elsewhere, find the conditional mean and variance of X_{1} given $\mathrm{X}_{2}=\mathrm{x}_{2}, 0<\mathrm{x}_{2}<1$ and X_{2} given $\mathrm{X}_{1}=\mathrm{x}_{1}, 0<\mathrm{x}_{1}<1$.
22.(a) Derive the probability density function of F distribution.
(b) Derive the mean and variance of chi-square distribution with n degrees of freedom.

